skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tavecchio, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mechanisms such as shock acceleration, magnetic reconnection in a kink unstable jet, and extreme turbulence in the jet flow are all expected to produce a distinctive time variability pattern of the X-ray polarization properties of high synchrotron peak blazars (HSP). To determine whether the recently launched Imaging X-ray Polarimetry Explorer (IXPE) can follow the polarization variations induced by different particle acceleration mechanisms in blazar jets, we simulated observations of an HSP blazar variable in terms of the polarization degree and angle according to theoretical predictions. We used the Monte Carlo tool ixpeobssim to create realistic IXPE data products for each model and for three values of flux (i.e., 1, 5, and 10 × 10 −10 erg s −1 cm −2 ). We generated simulated light curves of the polarization degree and angle by time-slicing the simulated data into arbitrary short time bins. We used an χ 2 test to assess the performance of the observations in detecting the time variability of the polarization properties. In all cases, even when the light curves are diluted in an individual time bin, some degree of polarization is still measurable with IXPE. A series of ~10 ks long observations permits IXPE to follow the time variability of the polarization degree in the case of the shock acceleration model. In the case of the magnetic reconnection model, the nominal injected model provides the best fit of the simulated IXPE data for time bins of ~5–10 ks, depending on the tested flux level. For the TEMZ model, shorter time slices of ~0.5 ks are needed for obtaining a formally good fit of the simulated IXPE data with the injected model. On the other hand, we find that a fit with a constant model provides a χ 2 lower than the fit with the nominal injected model when using time slices of ~20 ks, ~60/70 ks, and ~5 ks for the case of the shock acceleration, magnetic reconnection, and TEMZ model, respectively. In conclusion, provided that the statistics of the observation allows for the slicing of the data in adequately short time bins, IXPE observations of an HSP blazar at a typical flux level can detect the time variability predicted by popular models for particle acceleration in jets. IXPE observations of HSP blazars are a useful tool for addressing the issue of particle acceleration in blazar jets. 
    more » « less
  2. null (Ed.)
    ABSTRACT Polarimetric measurements, especially if extended at high energy, are expected to provide important insights into the mechanisms underlying the acceleration of relativistic particles in jets. In a previous work, we have shown that the polarization of the synchrotron X-ray emission produced by highly energetic electrons accelerated by a mildly relativistic shock carries essential imprints of the geometry and the structure of the magnetic fields in the downstream region. Here, we present the extension of our analysis to the non-stationary case, especially suitable to model the highly variable emission of high-energy emitting BL Lacs. We anticipate a large ($$\Pi \approx 40{{\ \rm per\ cent}}$$), almost time-independent degree of polarization in the hard/medium X-ray band, a prediction soon testable with the upcoming mission IXPE. The situation in other bands, in particular in the optical, is more complex. A monotonic decrease of the optical degree of polarization is observed during the development of a flare. At later stages, Π reaches zero and then it starts to increase, recovering large values at late times. The instant at which Π = 0 is marked by a rotation of the polarization angle by 90°. However, at optical frequencies, it is likely that more than one region contribute to the observed emission, potentially making it difficult to detect the predicted behaviour. 
    more » « less
  3. Context.NGC 1068 is the most observed radio-quiet active galactic nucleus (AGN) in polarimetry, yet its high-energy polarization has never been probed before due to a lack of dedicated polarimeters. Aims.Using the first X-ray polarimeter sensitive enough to measure the polarization of AGNs, we want to probe the orientation and geometric arrangement of (sub)parsec-scale matter around the X-ray source. Methods.We used the Imaging X-ray Polarimetry Explorer (IXPE) satellite to measure, for the first time, the 2–8 keV polarization of NGC 1068. We pointed IXPE at the target for a net exposure time of 1.15 Ms, in addition to using twoChandrasnapshots of ∼10 ks each in order to account for the potential impact of several ultraluminous X-ray sources (ULXs) within IXPE’s field of view. Results.We measured a 2–8 keV polarization degree of 12.4% ± 3.6% and an electric vector polarization angle of 101° ± 8° at a 68% confidence level. If we exclude the spectral region containing bright Fe K lines and other soft X-ray lines where depolarization occurs, the polarization fraction rises to 21.3% ± 6.7% in the 3.5–6.0 keV band, with a similar polarization angle. The observed polarization angle is found to be perpendicular to the parsec-scale radio jet. Using a combinedChandraand IXPE analysis plus multiwavelength constraints, we estimated that the circumnuclear “torus” may sustain a half-opening angle of 50–55° (from the vertical axis of the system). Conclusions.Thanks to IXPE, we have measured the X-ray polarization of NGC 1068 and found comparable results, both in terms of the polarization angle orientation with respect to the radio jet and the torus half-opening angle, to the X-ray polarimetric measurement achieved for the other archetypal Compton-thick AGN: the Circinus galaxy. Probing the geometric arrangement of parsec-scale matter in extragalactic objects is now feasible thanks to X-ray polarimetry. 
    more » « less
  4. ABSTRACT OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, $$E\gt $$ 100 GeV) $$\gamma$$-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE $$\gamma$$-ray emission happened during a high state of $$\gamma$$-ray activity in July 2016, observed by many instruments from radio to VHE $$\gamma$$-rays. We identify four states of activity of the source, one of which includes VHE $$\gamma$$-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index $$3.27\pm 0.44_{\rm stat}\pm 0.15_{\rm sys}$$ (MAGIC) and $$3.39\pm 0.58_{\rm stat}\pm 0.64_{\rm sys}$$ (H.E.S.S.) in the energy range of 55–300 and 120–500 GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  5. Aims.Mrk 421 was in its most active state around early 2010, which led to the highest TeV gamma-ray flux ever recorded from any active galactic nuclei (AGN). We aim to characterize the multiwavelength behavior during this exceptional year for Mrk 421, and evaluate whether it is consistent with the picture derived with data from other less exceptional years. Methods.We investigated the period from November 5, 2009, (MJD 55140) until July 3, 2010, (MJD 55380) with extensive coverage from very-high-energy (VHE;E > 100 GeV) gamma rays to radio with MAGIC, VERITAS,Fermi-LAT,RXTE,Swift, GASP-WEBT, VLBA, and a variety of additional optical and radio telescopes. We characterized the variability by deriving fractional variabilities as well as power spectral densities (PSDs). In addition, we investigated images of the jet taken with VLBA and the correlation behavior among different energy bands. Results.Mrk 421 was in widely different states of activity throughout the campaign, ranging from a low-emission state to its highest VHE flux ever recorded. We find the strongest variability in X-rays and VHE gamma rays, and PSDs compatible with power-law functions with indices around 1.5. We observe strong correlations between X-rays and VHE gamma rays at zero time lag with varying characteristics depending on the exact energy band. We also report a marginally significant (∼3σ) positive correlation between high-energy (HE;E > 100 MeV) gamma rays and the ultraviolet band. We detected marginally significant (∼3σ) correlations between the HE and VHE gamma rays, and between HE gamma rays and the X-ray, that disappear when the large flare in February 2010 is excluded from the correlation study, hence indicating the exceptionality of this flaring event in comparison with the rest of the campaign. The 2010 violent activity of Mrk 421 also yielded the first ejection of features in the VLBA images of the jet of Mrk 421. Yet the large uncertainties in the ejection times of these unprecedented radio features prevent us from firmly associating them to the specific flares recorded during the 2010 campaign. We also show that the collected multi-instrument data are consistent with a scenario where the emission is dominated by two regions, a compact and extended zone, which could be considered as a simplified implementation of an energy-stratified jet as suggested by recentIXPEobservations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2%  ±  0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario. 
    more » « less
  7. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  8. ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV. 
    more » « less
  9. ABSTRACT We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry. 
    more » « less